NOKIA Bell Labs

Creating new Opportunities with the FutureX Network

Theodore(Tod) Sizer Nokia Bell Labs

Human value: Time

Transcendence Needs Helping others self-actualize Self-Actualization Needs Personal Growth, Self-fulfillment etc.

Aesthetic Needs

cognitive needs

Knowledge, Meaning, Self-Awareness etc.

Esteem Needs chievement, Status, Responsibility, Reputation etc

Belonging & Love Needs Family, Affection, Relationships, Colleagues, Communities etc.

Safety Needs

Protection, Security, Order, Law, Limits, Stability etc.

Biological and Physiological Needs Basic Life Needs: Air, Food, Drink, Shelter, Warmth, Sex, Sleep etc.

Free Wifi

Thinking time....

 $s^{-1} \rightarrow t$

We have continuously created tools to augment our physical abilities...and save time

$D \rightarrow t \downarrow \uparrow$

X 10 - X 1000 ?

We have created tools to increase discovery to save time (and waste time?)

Thinking time....

Need to interface digital & physical realms...to decrease distance and waste, and create time

The Future of All Things and the Creation of Time

Analog Things

NOKIA Bell Labs

Digital Things

Creating Time is the 5G Killer App

The coming revolution

Technological Revolution (def):

Interconnection of new systems and technologies + capacity to profoundly transform economies & society

Tech. Revolution	Enabling Technology	Connectivity	
Financial (1600 – 1740)	Stocks & Bonds	Banking & Stock Market Infrastructure	
1 st Industrial (1780 – 1840)	Steam Engine & Iron Production	Rail and Shipping Networks	
2 nd Industrial (1880 – 1920)	Steel & Chemicals	Extended Transportation Networks Electricity & Telecom Networks	
Scientific-Technical (1940 – 1970)	Analog & Digital Signal processing	Digital Communications Networks	
Information (1985 – 2015)	The Web, Cloud computing & Mobile devices	Internet & Broadband Access	
Automation of Everything (2015 –)	Digital interfaces & Data analysis	Future X Network	

9 © 2016 Nokia

Future of automated systems, platforms, infrastructure An estimated \$3.8T-\$11T market in 2025

Latency matters ... reducing time to save time

	Distance Traveled		
 Speed	1 ms	10 ms	100 ms
3 m/s	3 mm	3 cm	30 cm
150 km/h	4.2 cm	42 cm	4.2 m
100 km/h	2.8 cm	28 cm	2.8 m

Fundamental truth: Low Latency requirement demands Distributed Cloud Architecture

Latency & bandwidth matter ... for new digital experiences that save time

12 © 2016 Nokia

The New Architecture for New Value

Future Communication Network for Industrial Applications

New Capabilities create new solutions for machine to machine communication.

Round Trip Time Measurements

5G offers superior low latency connection with high reliability

Ultra Reliable Low Latency Control and flexible Networks

Industrial Robotics

Cooperative Collision Avoidance

3D Printing - Construction

Drone Installation of Nokia LTE FCell

Cooperative Drone Control

Teleoperation

Converged Access

- **What:** Universal remote node fully programmable for converged 5G mobile and fixed access exploiting deep fiber access.
- **Benefit**: Common access node, common site usage, Multi-Access speed increase.

Leverage commonalities to realize truly converged universal remote

Future Broadband Access Architecture

Universal Remote Access Node

Imagine a converged network at fiber-like access speeds and fully programmable

Is 5G the last "G"? Should this be our ambition?

Move to Software/Cloud based Solutions

Capabilities of SDR and SDN are now largely sufficient

Software flexibility can allow continuous network adaptation and improvement

Software support for new applications.

Myriad new and diverse devices will dominate

Smartphones and variants will continue.

Ubiquitous connection of machines with new requirements.

5G standard must build Phy layer flexibility into the standard.

Human Needs for Communication are evolving faster than every 10 years

5G initiatives in Korea and the US are moving faster than standardization.

Usage is exploding.

Dependence is Growing.

New uses proliferating.

Software systems together with rapid service introduction will force market acceleration

